Scroll Back to Top
May 1, 2021

Preclinical oncology imaging capabilities and expertise

Rapid non-invasive imaging technologies prove invaluable in diagnosing cancer and monitoring response to therapies. Many, such as magnetic resonance imaging (MRI) and X-ray computed tomography (CT), are an essential part of the clinical practice. In preclinical development, the widespread use of mouse models of disease for cancer requires the ability to image mouse models non-invasively to screen for potential drug targets, monitor disease development and therapeutic efficacy, and to detect biomarkers of drug efficacy quickly and in real time.1,2
January 1, 2017

PC-3M-Luc-C6 – a model for prostate carcinoma

Early detection of prostate cancer is very challenging. Unfortunately patients are asymptomatic until advanced stage disease, leaving them with limited treatment options. The delayed detection also results in an increase in the incidence of metastatic disease. Advanced stage prostate cancer typically metastasizes to the bone and lymph nodes.
February 1, 2017

GL261-luc: A model for immunotherapy and radiation therapy

Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer. GBM tumors grow within a fairly immunosuppressive tumor microenvironment and a relatively immune-privileged central nervous system. For patients diagnosed with GBM, prognosis remains poor with conventional therapies that include radiotherapy, chemotherapy, and surgery.
October 1, 2019

LL/2: an immunosuppressive murine tumor model

Lung cancer is the second most common cancer diagnosed in both men and women in the United States and is, by far, the most common cause of cancer-related deaths in men and women. In 2019, the American Cancer Society estimates that 228,150 new cases of lung cancer (116,440 in men and 111,710 in women) will be diagnosed, and 142,670 deaths from lung cancer (76,650 in men and 66,020 in women) will occur.
March 1, 2018

Models for non-small cell lung carcinoma - part 2

As we presented in last month’s model spotlight, lung cancer is a devastating disease and is the leading cause of cancer death in the US and worldwide.1 The research community continues to look for new models that will aid in lung cancer research. The ATCC (a widely used cell repository) currently has over 100 different human derived lung cancer cell lines.
January 1, 2019

C1498-Luc-mCherry: A syngeneic acute myeloid leukemia (AML) model

Acute myeloid leukemia (AML) is the most common hematologic malignancy in adults with a 5-year survival rate of ~25% following diagnosis.[1] While two-thirds of AML patients treated with standard high dose chemotherapy achieve remission, 50% of patients relapse after remission. The majority of relapses occur within two to three years of initial treatment, and every patient carries the risk of relapse due to the molecular heterogeneity of the disease.[2] This has created an impetus to explore novel therapeutic approaches; in particular, immune-based therapies, since AML cells express both major histocompatibility complex (MHC) classes I and class II which makes them susceptible targets of innate and adaptive immune responses.[3]