
Authors: Andrea Mendoza Bertelli, María Mercedes Otero Pizarro, María Paz Fernandez, Delfina Dibarbosa, María Florencia Cantarella, Romina Girotti, Yamil Mahmoud, Leandro Güttlein, Iagani Chico, Patricia Brandalise, Carolina Dutra and Ruben Salanova.

Background
KRAS is mutated in ~30% of non-small-cell lung cancer (NSCLC). Most of the mutations involve codon 12 of exon 2, with G12C mutation being the most frequent (~12%). Differences in mutational frequency have been demonstrated in patients of different ethnicities and smoking status. However, the effects of ancestry and environmental factors have not been exhaustively described for the Argentine population.

Methods
 ✓ An observational study was conducted in a cohort of 1810 patients: 1510 retrospective tissue samples and 300 prospective tissue samples
 ✓ Samples were analyzed by quantitative real time PCR (qPCR) using AmoyDX KRAS Mutation Detection Kit.
 ✓ A validation was also performed on 181 tissue samples by digital droplet PCR (ddPCR) with the commercial kit PrimePCR™ ddPCR™ Mutation Detection Assay Kit: KRAS p.G12C (Biorad).
 ✓ Statistical analyses were performed to address the association of KRAS p.G12C across demographics characteristics such as smoker-ex smoker / no smoker condition, sex, age, geographical distribution, histological subtype, metastasis or primary tumor and organ site of metastasis.
 ✓ The statistical analyses have been carried out applying: the Chi-square test for the association between KRAS G12C and each of the other variables, and the multiple logistic regression adjusted by sex for the Forest Plot, Bar Plot and Oncoprint. All analyses have been carried out in R.

Results

1) Cohort description: 1810 samples were analyzed by qPCR.

- Geographical distribution
- Smoking condition
- Tumor stage
- Age
- Histologic subtype
- Tumor type

2) KRAS p.G12C genotyping in solid biopsies by qPCR: It is possible to evaluate KRAS p.G12C with qPCR since only 0.38% of the samples had a non-evaluable result. A prevalence of 14.48% is evidenced in the Argentine population.

3) Forest Plot:
- Tumor type (Primary vs Metastatic)
- Smoker condition (Ex vs No smoker)
- Biopsy site (Bronchus vs Lung)
- Biopsy site (Brain vs Lung)
- Biopsy site (Non-regional node vs Lung)
- Biopsy site (Regional node vs Lung)
- Biopsy site (Liver vs Lung)
- Biopsy site (Bone vs Lung)
- Biopsy site (Mediastinum vs Lung)
- Biopsy site (Others vs Lung)
- Tumor stage (IV vs III)
- Age at diagnosis

4) Oncoprint: Graphical representation of KRAS p.G12C alteration and its association with variables such as: tumor stage, smoker condition, age, sex, tumor type, histologic subtype and tumor biopsy site.

5) Validation between qPCR and ddPCR: Validation parameters values

Future Directions for Research
This study represents a deep understanding of KRAS p.G12C mutational landscape in the Argentine population and its association with demographic and clinical characteristics and demonstrates that qPCR is a feasible methodology for routine testing.