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NRG1 gene fusions are rare, therapeutically relevant, oncogenic drivers that occur across solid tumor
types. To understand the landscape of NRG1 gene fusions, 4397 solid tumor formalin-fixed, paraffin-
embedded samples consecutively tested by comprehensive genomic and immune profiling during
standard care were analyzed. Nineteen NRG1 fusions were found in 17 unique patients, across multiple
tumor types, including nonesmall-cell lung (n Z 7), breast (n Z 2), colorectal (n Z 3), esophageal
(n Z 2), ovarian (n Z 1), pancreatic (n Z 1), and unknown primary (n Z 1) carcinomas, with a
cumulative incidence of 0.38%. Fusions were identified with breakpoints across four NRG1 introns
spanning 1.4 megabases, with a mixture of known (n Z 8) and previously unreported (n Z 11) fusion
partners. Co-occurring driver alterations in tumors with NRG1 fusions were uncommon, except colorectal
carcinoma, where concurrent alterations in APC, BRAF, and ERBB2 were present in a subset of cases. The
overall lack of co-occurring drivers highlights the importance of identifying NRG1 gene fusions, as these
patients are unlikely to harbor other targetable alterations. In addition, RNA sequencing is important to
identify NRG1 gene fusions given the variety of fusion partners and large genomic areas where
breakpoints can occur. (J Mol Diagn 2023, -: 1e13; https://doi.org/10.1016/j.jmoldx.2023.03.011)
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The neuregulin 1 gene (NRG1) encodes an epidermal
growth factor (EGF) family protein that mediates signaling
via ERBB receptor pathways. NRG1 produces six different
isoforms with expression varying across different tissue
types through alternative promoters and splicing events.1 In
normal cells, NRG1 promotes the growth and differentiation
of epithelial and other cell types. In human cancer, NRG1
promotes cell proliferation (CP) through gene rearrange-
ment events that preserve the EGF domain, leading to
constitutive activation of mitogen-activated protein kinase
and phosphatidylinositol 3-kinase signaling pathways.2

NRG1 is typically the 30 partner in these gene fusions
with a wide array of genes as the 50 partner.3 There are a few
recurrent partners, including CD74, SLC3A2, VAMP2, and
PCM1, with many novel fusions identified in each newly
on behalf of the Association for Molecular Pa
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published cohort.4 To date, NRG1 fusions have been
identified across all solid tumors at a prevalence of <1%.3,5

The incidence of NRG1 fusions is higher in gallbladder
thology and American Society for Investigative Pathology.

/licenses/by-nc-nd/4.0).
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cancer, pancreatic ductal adenocarcinoma, and renal cell
carcinoma, at 0.5% in each, but is present across all solid
tumors at a prevalence of approximately 0.2%.3

NRG1 fusions are key genomic drivers in patients with
solid tumors that otherwise lack classic targetable alter-
ations. As has already been shown for other clinically sig-
nificant fusion genes, such as ALK, NTRK1, NTRK2, or
NTRK3, variation in testing technologies can result in sig-
nificant differences in the likelihood of fusion identifica-
tion.6 Single-gene tests, hotspot panels, inadequately baited
DNA-based next-generation sequencing (NGS), and panels
that lack NRG1 have technical limitations precluding
accurate detection of fusions. Given these challenges, the
American Society of Clinical Oncology recently released
guidelines preferentially recommending RNA sequencing to
detect gene fusions.7

Routine assessment for NRG1 fusions is not yet part of the
standard workup for all solid tumors, and many available
NGS panels do not assess for NRG1 fusions, so many pa-
tients remain undetected. Using highly sensitive RNA-
sequencing methods, such as hybrid capture, to detect fu-
sions is optimal for comprehensive identification of targetable
alterations, including NRG1 fusions in solid tumors. In
nonesmall-cell lung cancer (NSCLC), National Compre-
hensive Cancer Network Clinical Practice Guidelines in
Oncology already recommend biomarker testing be per-
formed using broad NGS panels to detect druggable rear-
rangements or fusions involving ALK, NTRK, ROS1, and
RET with consideration of RNA sequencing if not previously
performed.8 In pancreatic cancer, National Comprehensive
Cancer Network guidelines specifically recommend molec-
ular profiling to identify uncommon, targetable genomic al-
terations, including NRG1 fusions.9,10 NRG1 testing is of
particular importance in patients with locally advanced or
metastatic pancreas cancer as they have a poor prognosis with
standard-of-care therapies. NRG1 fusions are especially
enriched in KRAS-negative pancreatic carcinomas.11

Detection of NRG1 fusions is important, and as is often the
case with oncogenic drivers, NRG1 fusions are typically
mutually exclusive with other targetable oncogenic drivers.
In rare cases, NRG1 fusions are present with other driver
alterations, such as BRAF, KRAS, or ALK rearrangements.3,12

The immunotherapy marker landscape in patients with
NRG1 fusions is relatively unexplored, and there has been
minimal investigation of treatment sequence in these
patients with respect to targeted therapy versus immuno-
therapy. Only one prior study was identified that has
examined PD-L1 expression and tumor mutation burden
(TMB) in patients with NRG1 fusions, where cases were
predominantly low for both PD-L1 and TMB.13

Targeted therapies developed for EGF receptor and HER3
(ERBB3) have been repurposed for use in NRG1
fusionepositive cancers.4 Afatinib, an EGF receptor inhib-
itor, has shown partial responses, including progression-free
survival of 5.5 months in two patients with NRG1-
ATP1B1epositive pancreatic ductal adenocarcinoma and
2
FLA 5.6.0 DTD � JMDI1317_proof �
progression-free survival of up to 10 months in a patient with
lung IMA Qharboring an NRG1-CD74 fusion.14,15 In a
multicenter registry, 4 (of 12) patients treated with afatinib
showed objective responses with a median progression-free
survival of 3.5 months.16 Resistance to afatinib was also
seen in patients with lung cancer with NRG1 fusions previ-
ously treated with anti-ERBB3 therapy.17 NRG1 fusions may
also represent a resistance mechanism to alectinib, an ALK Q

inhibitor. A recent study evaluating the novel NRG1-
RALGAPA1 fusion was assessed using engineered cells
and was found to be resistant to ALK inhibition through loss
of phosphorylation of SHP2 QALK adaptor protein.18

Currently, patients with NRG1 fusions are actively
recruited for ongoing clinical trials for seribantumab (an
ERBB3 inhibitor)15 and zenocutuzumab16 (an ERBB2/
ERBB3 bispecific antibody),19,20 both of which have US
Food and Drug Administration fast-track designation and
offer a promising approach to help change the standard-of-
care clinical management based on early results showing a
34% overall response rate in solid tumors.21

This study describes the landscape of NRG1 fusions
detected across solid tumors by RNA sequencing, and
characterizes their associations with other genomic alter-
ations, TMB, PD-L1 status, CP signatures, and tumor
immunogenic signatures (TIGSs).

Materials and Methods

Patient Cohort

Approval for this study was obtained from the Western
Institutional Review Board protocol number 1340120.
Comprehensive genomic and immune profiling data from
4397 formalin-fixed, paraffin-embedded patient samples
tested during routine clinical care were analyzed. Patient
demographics and tumor information were abstracted from
the pathology reports and requisition forms submitted at the
time of processing. These samples spanned a wide variety of
solid tumor types, including, but not limited to, NSCLC
(n Z 1696), colorectal (n Z 611), breast (n Z 369),
esophageal (n Z 117), pancreatic (n Z 157), ovarian
(n Z 105), and unknown primary (n Z 233) carcinomas.

Comprehensive Genomic and Immune Profiling

Comprehensive genomic and immune profiling was per-
formed using the OmniSeq (Buffalo, NY) INSIGHT assay
performed in a laboratory accredited by the College of
American Pathologists and certified by the Clinical Labo-
ratory Improvement Amendments. As previously described,
OmniSeq INSIGHT is an NGS-based in vitro diagnostic
device for the detection of genomic variants, signatures, and
immune gene expression in formalin-fixed, paraffin-
embedded tumor tissue.22 Briefly, DNA sequencing with
hybrid capture is used to detect small variants in the full
exonic coding region of 523 genes (single- and
jmdjournal.org - The Journal of Molecular Diagnostics
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multi-nucleotide substitutions, insertions, and deletions),
copy number alterations in 59 genes (gains and losses), as
well as analysis of microsatellite instability and TMB
genomic signatures. RNA is sequenced with hybrid capture
approach to detect fusions and splice variants in 55 genes, in
addition to mRNA expression in 64 immune genes.

Amplicon-based targeted NGS for digital gene expression
(RNA sequencing) was used to interrogate a panel of 395
immune genes (64 clinically validated), including T-cell
receptor signaling, tumor-infiltrating lymphocytes, and
cancer testis antigens. Absolute reads were normalized
using a non-transcript control to determine and subtract
background and then compared with housekeeping genes to
give a normalized reads per million (nRPM) for each gene.
Expression ranks for each gene were calculated by con-
verting nRPM values to a percentile rank between 0 and 100
as compared against a reference population of 735 solid
tumor samples spanning 35 tumor types.23

A TIGS based on the mean nRPM rank of 161 immune
genes was calculated to describe the degree of immune
activity in each tissue sample.24 TIGS is considered high
when �67, medium when �45 and <67, and low when
<45. A CP signature was also calculated by taking the mean
nRPM for 10 cell proliferationerelated genes to characterize
the tumor proliferation state in each tissue sample.25 The CP
signature is considered high when �67, medium when �35
and <67, and low when <35.

Immunohistochemical Studies

For all tumor types, PD-L1 expression on the surface of
tumor cells was measured by Dako PD-L1 immunohisto-
chemistry (IHC) 22C3 pharmDx (Agilent, Santa Clara, CA).
Expression was scored by a board-certified anatomic
pathologist according to published guidelines26 as a tumor
proportion score (TPS), which is the percentage of tumor
cells with positive linear membranous staining.

Results

NRG1 Fusions Are Present Across Numerous Solid
Tumor Types and Histologic Types

A total of 4397 unique patient samples across 34 solid
tumor types were sequenced. From those cases, 19 NRG1
fusions (involving the 30 region of NRG1) in 17 unique
patients were identified for an overall patient prevalence of
0.4%. The median age of patients with NRG1 fusions was
65 years (range, 41 to 86 years), with 65% women and 35%
men (Table 1 and Supplemental Table S1).

Seven NRG1 fusion cases were detected in patients with
NSCLC, representing 0.41% of all NSCLC cases sequenced
(Table 1 and Figure 1). Tissue specimens for six of seven
NSCLC cases were from the primary site, with one distant
metastasis. NRG1 fusions in NSCLC tumors were identified
The Journal of Molecular Diagnostics - jmdjournal.org
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in many NSCLC histologic types, including mucinous
adenocarcinoma (Figure 2 ½A), large-cell neuroendocrine
carcinoma (Figure 2B), poorly differentiated adenocarci-
noma (Figure 2C), and squamous cell carcinoma
(Figure 2D).

NRG1 fusions were also identified in tumor types other
than NSCLC, including breast [n Z 2 of 369 (0.54%)],
colorectal [CRC; nZ 3 of 611 (0.49%)], esophageal [nZ 2
of 117 (1.71%)], ovarian [n Z 1 of 105 (0.95%)], and
pancreatic [n Z 1 of 157 (0.64%)] carcinomas and carci-
noma of unknown primary [n Z 1 of 233 (0.43%)] (Table 1
and Figure 1). Half of the NRG1 fusions in these cases were
identified in tissue specimens from primary sites, and half
were identified from distant metastatic sites.
Genomic Landscape of NRG1 Fusions

NRG1 has a complex gene structure, with six different
promoters termed type I through type VI. All exons and
introns were labeled with respect to the type I promoter
(NM_013956.5, https://www.ncbi.nlm.nih.gov/nuccore/167
7537276, last accessed April 24, 2023).1,27,28 Fusion
breakpoints were located in introns 1, 2, 3, and 9 as well as
the intron upstream to exon 1 (intron 1 for the type II, IV,
and V promoters), which collectively span 1.4 megabases
(Mb) (Table 2 ½and Supplemental Table S2). The functional
EGF-like domain is in exons 6 and 7, with a transmembrane
domain in exon 8 (Figure 3 ½). NRG1 gene fusions canoni-
cally have a 50 partner gene fused to NRG1 at the 30 end.
Twelve novel fusion partners were identified: DDHD2,
FUT10, IKBKB, TMEM66, ZCCHC7, TNRFSF10B, BIN3,
BRE, CCAR2, CD9, ERO1L, and KCTD9; two previously
identified fusion partners were identified twice: CD74 and
SLC3A2, and PCM1; and one previously identified fusion
partner was identified once: UBXN8 (Figures 3 and 4 ½). One
fusion lacked the EGF-like domain (PCM-NRG1)
(Figure 4). Eight of the fusions were a result of rearrange-
ments within chromosome 8, whereas nine fusions were the
result of interchromosomal rearrangements. All interchro-
mosomal rearrangements were within intron 3, except
ZCCHC7 (Figure 5 ½and Table 2).

On the basis of the fusion breakpoints (Figure 5), the
CD74, SLC3A2, TMEM66, and IKBKB cases are predicted
to be in frame with NRG1. The PCM1, DDHD2, and
UBXN8 cases have only the 50 untranslated region of the
fusion partner and either a canonical or an internal trans-
lation start site for NRG1. The TNFRSF10B, CD9, ERO1L,
CCAR2, BIN3, BRE, KCTD9, FUT10, and ZCCHC7 cases
all have internal translation start sites in NRG1 exon 2 or
exon 4.

NRG1 gene fusions activate HER2 and HER3 hetero-
dimers through interaction of HER3 and the EGF-like
domain of NRG1 (Figure 6 ½). The EGF-like domain in
exons 6 to 7 is present in all gene fusions identified with
3
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Table 1 Patient Demographics

Variable NSCLC (n Z 1696)

Tumor types other than NSCLC All cases sequenced

(n Z 2805) (n Z 4397)

NRG1 fusions detected, n (%) 7 (0.41) 10 (0.35) 17 (0.38)
Age, mean (range), years 72 (64e83) 65 (41e86) 68 (41e86)
Sex, n (%)

Male 2 (29) 4 (40) 6 (35)
Female 5 (71) 6 (60) 11 (65)

Stage, n (%)
IIIQ32 e 1 (10) 1 (6)
IV 1 (14) 5 (50) 6 (35)
Unknown 6 (86) 4 (40) 10 (59)

Specimen site, n (%)
Primary 6 (86) 5 (50) 11 (65)
Distant metastasis 1 (14) 5 (50) 6 (35)

NRG1 fusions were identified in the following tumor types: NSCLC [nZ 10 Q33(0.41%)], breast carcinoma [nZ 2 of 369 (0.54%)], colorectal carcinoma [nZ 3
of 611 (0.49%)], esophageal carcinoma [n Z 2 of 117 (1.71%)], ovarian carcinoma [n Z 1 of 105 (0.95%)], pancreatic carcinoma [n Z 1 of 157 (0.64%)],
and unknown primary carcinoma [n Z 1 of 233 (0.43%)].
NRG1, neuregulin 1; NSCLC, nonemall-cell lung cancer.
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NRG1 as the 30 fusion partner, except for one of the PCM1-
NRG1 fusions (Figures 3 and 4). Transmembrane domains
are present in the following partner genes, UBXN8, CD74,
SLC3A2, CD9, TMEM66, and TNFRSF10B (Figure 4),
whereas 18 of 19 NRG1 fusions contain the transmembrane
domain in exon 8; however, a transmembrane domain is not
required for signaling.
Figure 1 Tumor types with NRG1 fusions identified. A: Number of patient sampl
(NSCLC) and other tumor types, with the NRG1 fusion-positive cases identified. B:

4
FLA 5.6.0 DTD � JMDI1317_proof �
50 NRG1 Gene Fusions

In addition to the 19 gene fusions identified with the 30

region of the NRG1 gene, six cases were identified that had
fusions containing the 50 region of the NRG1 gene. Four of
these fusions had a breakpoint in the large intron upstream
of exon 1 (intron 1 for type II, IV, and V promoters,
es with successful RNA sequencing separated into nonesmall-cell lung cancer
Proportion of NRG1 fusions identified within each solid tumor type.
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Figure 2 Representative hematoxylin and eosin sections from lung cancer cases with an NRG1 fusion. NRG1 fusions are found in a wide variety of tumor
types and histologic types. Photomicrographs represent nonesmall-cell lung cancer samples where NRG1 fusions were identified. A: Mucinous lung adeno-
carcinoma. B: Large-cell neuroendocrine lung carcinoma. C: Poorly differentiated lung adenocarcinoma. D: Squamous cell lung carcinoma. Scale barZ 200 mm
(AeD). Original magnification, �20 (AeD).
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approximately 1.0 Mb). One contained only the first exon
from the type II, IV, and V promoters in the gene fusion,
whereas one contained NRG1 exon 1, and the last contained
NRG exons 1 to 3.

Genomic Alterations that Co-Occur with NRG1 Fusions

Co-occurring genomic alterations across all samples with an
NRG1 fusion were evaluated (Figure 7A and Supplemental
Table S3). In NSCLC, no co-occurring oncogenic driver
mutations were identified, with TP53 being the only recurrent
genomic alteration (n Z 2/7). The large cell neuroendocrine
Table 2 Fusion Locations, Fusion Partner Genes, and Intron Sizes

NRG1 gene Length, kbp

Intron 1 for type II, IV, and V NRG1 isoforms 955
Intron 1 for type III NRG1 isoforms 406
Intron 2 for type III NRG1 isoforms 9.5
Intron 3 for type III NRG1 isoforms 8.8
Intron 9 for type III NRG1 isoforms 2.8

Fusions found twice in the cohort are underlined; these fusions have all been pre
standard italic text. Novel fusions are in bold text. There were 19 fusions found
NRG1, neuregulin 1.

The Journal of Molecular Diagnostics - jmdjournal.org
FLA 5.6.0 DTD � JMDI1317_proof �
lung cancer case harbored RB1 and TP53 co-occurring
alterations (Figure 7B and Supplemental Table S3). CRC
cases had co-occurring alterations in TP53 (n Z 3/3) and
APC (n Z 2/3). In addition, CRC cases had either co-
occurring BRAF alterations (2/3) or an ERBB2 amplifica-
tion (1/3) (Figure 7C and Supplemental Table S3). For all
other tumor types, TP53 genomic alterations were most
common (nZ 3/7), including in 1 of 2 esophageal carcinoma
cases, 1 of 2 breast carcinoma cases, and 1 of 1 ovarian
carcinoma case. Driver alterations identified outside of
NSCLC and CRC were all within the signaling pathway of
NRG1 and activated HER2/HER3 heterodimers, resulting in
Fusion partner gene

UBXN8
DDHD2, FUT10, IKBKB, PCM1, TMEM66, ZCCHC7
TNFRSF10B
BIN3, BRE, CCAR2, CD9, CD74, ERO1L, KCTD9, SLC3A2
PCM1

viously described. Fusions previously described and only present once are in
in 17 patients. Two samples had two NRG1 fusions each.
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Figure 3 NRG1 gene schematic and gene fusion structures. NRG1 can be driven by six promoters, termed type I through type VI. The location of the fusion
partners is listed where the fusion breakpoint occurs in the NRG1 gene. Fusion partners are color coded where red is a novel partner, black is a known partner
identified once at that location, and green is a known partner identified twice Q23. Gene schematic and exon labels are based on the reference sequence
NM_013956.5 (https://www.ncbi.nlm.nih.gov/nuccore/1677537276, last accessed April 24, 2023). EGF, epidermal growth factor; TM, transmembrane Q24.
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P13K/AKT signaling. An ERBB2 amplification was identi-
fied in an esophageal carcinoma, whereas one of the breast
carcinoma cases had a PIK3CA alteration (Figure 7C and
Supplemental Table S3).

Immune Biomarkers in NRG1 Fusion-Positive Cases

To explore other possible treatment options for patients with
NRG1 fusions, immunotherapy-related biomarkers were
investigated, including TMB, CD274 expression, PD-L1
IHC, CP, and tumor inflammation by TIGS.

For the NSCLC cases, the median TMB was 6 mutations/
Mb (range, 0.7 to 37.7 mutations/Mb). One NSCLC case
had a high TMB (�10 mutations/Mb) (Figure 8A). PD-L1
IHC TPS by 22C3 antibody staining results was available
for all NSCLC cases, with a mean TPS of 24% (range, 0%
to 90%). Overall, five NSCLC cases had positive TPS
scores of �1%, with two of five cases having high TPS
scores >50% (Figure 8B). Expression of CD274, the gene
that encodes for PD-L1, was also measured by RNA
sequencing and scored by normalized reads per million
rank.23 Median CD274 expression was 73 nRPM (range, 14
to 95 nRPM), with five of seven cases having high
expression (nRPM �75) (Figure 8C). Three NSCLC sam-
ples had low levels of inflammation as measured by TIGS,
and three samples had high levels of inflammation as
measured by TIGS, with an overall median of 52 (range, 18
to 86) (Figure 8D). The CP signature showed low cell
proliferation for two samples, with high cell proliferation for
one sample with a median of 48 (range, 2 to 70) (Figure 8E).

For tumor types other than NSCLC, the median TMB was
4 mutations/Mb (range, 2.3 to 10.9 mutations/Mb). One
esophageal carcinoma case had a high TMB (�10 muta-
tions/Mb) (Figure 8A). PD-L1 expression results by IHC
6
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22C3 were available for six of the nonelung cancer cases,
with a mean TPS of 1.9% (range, 0% to 10%) (Figure 8B),
with two cases �50% TPS and five cases �1% TPS. The
median CD274 nRPM rank was 26 (range, 3 to 63) among
tumor types other than NSCLC. Concordant with PD-L1
protein expression by IHC, no cases had high expression
of CD274 by RNA sequencing (Figure 8C). The TIGS
showed low levels of inflammation for six samples, with
one sample having a high level of inflammation with an
overall median of 33 (range, 15 to 73) (Figure 8D). The CP
signature was low for five samples and high for two
samples, with a median of 39 (range, 6 to 70) (Figure 8E).
The NRG1 fusion-positive NSCLC cases were compared

with the NRG1 fusion-negative cases for TMB, PD-L1 TPS,
and CD274 expression (Figure 9 ½). There were no significant
differences between the NRG1 fusion-positive and NRG1
fusion-negative cases across these measures. There was
increased CD274 expression in the presence of an NRG1
fusion; however, this was not statically significant
(P Z 0.14), likely due to small sample size. There was also
increased cell proliferation as measured by the CP score in
the NRG1 fusion-positive compared with the NRG1 fusion-
negative cases (mean, 49 versus 27); however, this was also
not statistically significant (P Z 0.28).
Discussion

NRG1 fusions are rare oncogenic drivers that occur across
all solid tumor types.3 Data from 4397 patient samples after
RNA sequencing using hybrid capture to interrogate 55
genes for fusions were retrospectively analyzed. Collec-
tively, a wide array of known and novel NRG1 fusion
partners in a variety of solid tumors, including lung, breast,
jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 4 Representation of all NRG1 fusions
identified. EGF, epidermal growth factor; TM,
transmembrane Q25.
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colorectal, esophageal, ovarian, and pancreatic carcinomas,
were identified.3,17

NRG1 is a complex gene, with large introns and multiple
promoters. There are six different promoters (type I through
VI) with 33 exons and >30 isoforms generated by alterna-
tive splicing.1,27,28 There are not specific guidelines for
determining if NRG1 fusions are oncogenic; however, basic
principles from the Clin Gen NTRK Fusions Somatic Cancer
Variant Curation Expert Panel can be adapted to NRG1. An
NRG1 fusion is likely oncogenic if i) NRG1 is the 30 partner,
plus ii) it contains the EGF-like domain, which is contained
in exons 6 to 7 (Figure 3), and iii) there is an internal
initiation site (in NRG1 exon 2 or 41,3,29) or the reading
frame is preserved.30 Prior reports have identified multiple
cases where translocation of a promoter region is sufficient
for expression and oncogenic activity of NRG1, which can
be translated off internal initiation sites.3,29 This is the case
for several of the fusions identified in this study, where the
The Journal of Molecular Diagnostics - jmdjournal.org
FLA 5.6.0 DTD � JMDI1317_proof �
50 gene has only the 50 untranslated region fused to a portion
of the NRG1 gene with an internal initiation site. By these
criteria, 18 of the 19 fusions identified are predicted to be
functional. One of the PCM-NRG1 cases lacks the EGF-like
domain and may not be functional (Figure 5). This combi-
nation of a complex gene structure and minimal re-
quirements for a functional fusion protein is likely the
reason for the diversity of fusion partners.

Most NRG1 fusion breakpoints occur within the first four
introns, which encompasses approximately 1.4 Mb of
intronic sequencing. In addition, the intronic regions for
potential structural rearrangements are large, with approxi-
mately 1.4 Mb of intronic sequence in the first four introns
where NRG1 fusion breakpoints are most commonly found
(Table 2).

The array of fusion partners and large intronic areas
where breakpoints occur make identification of NRG1 gene
fusions challenging. The potential area for rearrangements
7
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Figure 5 Representation of the chromosomal locations of the gene fusions identified Q26. Of the 16 unique fusions, 10 were fusions between NRG1 and another
gene on chromosome 8 and 6 were with genes on other chromosomes. The thickness of the line represents the number of fusions with that partner (two each
for SLC3A2, CD74, and PCM1 Q27). Q37
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of 1.4 Mb is larger than the total size of most DNA CGP
panels.23,31e33 Prior studies have also identified NRG1 fu-
sions in RNA but not DNA.17 In the eNRGy1 NSCLC
NRG1 fusion registry, most fusions (74%) were identified
by RNA-based methods.13

In this cohort, the overall incidence of NRG1 fusions was
0.4%, twice as high as reported in a prior RNA amplicon-
based study (0.2%)3 and eight times as high as a
Figure 6 Mechanisms of action for NRG1 fusion proteins. EGF, epidermal gro

8
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previously reported hybrid capture DNA-based assay
(0.05%).17 The higher detection frequency reported
compared with DNA-based detection methods is likely due
to fusions missed by DNA only methods. This is supported
by the incidence of NRG1 fusions detected on RNA but not
DNA in that study.17 The increased incidence of fusions
relative to the study by Jonna et al3 may be from increased
sensitivity of hybrid capture versus amplicon-based
wth factor; PI3K, phosphatidylinositol 3-kinase; TM, transmembrane Q28.
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Figure 7 NRG1 fusion case oncoprints. A: Schematic of all cases. B: Schematic depicts only nonesmall-cell lung carcinoma (NSCLC) cases. C: Repre-
sentation of all solid tumor cases excluding NSCLC. Only genes with an alteration in at least two cases are shown. CNV, copy number variation; SNV, single-
nucleotide variation.
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sequencing, the relatively small numbers of NRG1-positive
fusion samples, or a difference in the composition of the
cohorts. The samples in this study were all sequenced at a
reference laboratory during routine clinical care, so there is
referral bias toward patients who have more advanced dis-
ease and who may have had other testing that failed to
identify targetable alterations or single-gene testing that
identified common alterations.

In addition to the typical fusions containing the 30 region
of the NRG1 gene, six cases were identified that had 50

NRG1 fusions. The fusions lack the EGF-like domain
required for oncogenic activity. The significance of these
fusions is unclear. The fusions could be nonfunctional, they
may disrupt the NRG1 gene in a way that results in over-
expression, or they may be the result of reciprocal trans-
locations that were not identified. The BAM alignments for
these cases were examined, and no evidence for a 30 NRG1
fusion transcript could be identified. Because of the un-
known significance of these six cases, they were not
included in any of the other analyses. Further studies of 50

NRG1 fusions are needed to determine if they are clinically
significant and whether patients will respond to targeted
therapy.

For the NSCLC NRG1 fusion-positive cases identified in
this cohort, there were no co-occurring driver alterations,
which is consistent with prior reports3; however, there have
been rare cases of NRG1 fusions occurring as a resistance
The Journal of Molecular Diagnostics - jmdjournal.org
FLA 5.6.0 DTD � JMDI1317_proof �
mechanism in ALK fusion þ ROS fusion
positive þ NSCLC, which was not observed in this
cohort.18 The only recurrent genomic alteration was the
presence of TP53. Patients with NRG1 fusion-positive
NSCLC respond poorly to nontargeted standard-of-care
therapy,13 further emphasizing the importance of identi-
fying these fusions for patient care. Other relevant bio-
markers assessed in the fusion cases were TMB and PD-L1.
One case had high TMB, and another had co-occurring high
TMB and high PD-L1. The significance of these biomarkers
co-occurring with an NRG1 fusion is unknown. In contrast
to NSCLC, CRC cases had co-occurring TP53 (n Z 3/3),
APC (n Z 2/3), and BRAF (n Z 2/3) alterations, and one
ERBB2 amplification. All three CRC cases had at least one
co-occurring driver alteration, which is also consistent with
prior reports.3,34 Among all nonelung cancer cases, there
were three cases with alterations in ERBB2 (HER2), three
cases with PTEN alterations, and two cases with BRAF al-
terations. This is interesting given that BRAF and PTEN are
involved with the mitogen-activated protein kinase pathway,
and the mechanism of action for NRG1 fusions is via an
interaction with HER2/HER3 heterodimers to activate
mitogen-activated protein kinase signaling pathways.2

Therapies targeting NRG1 fusions with anti-HER2 and
anti-HER3 agents are in clinical trials. NRG1 fusion-positive
tumors are being targeted with anti-ERBB3 (lumretuzumab)
and ERBB2 inhibitors (lapatinib and pertuzumab), and
9
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Figure 8 Measures of potential immunotherapy response and cell proliferation in NRG1 fusion-positive cases. A Q29eE: Tumor mutational burden (A), CD274
expression (B), PD-L1 Q30score [tumor proportion score (TPS); C], tumor immunogenic signature (TIGS; D), and cell proliferation (CP) score (E) between non-
esmall-cell lung cancer (NSCLC) and other tumor types with NRG1 fusions. A and B: The red lines represent the threshold between high and low. D and E: The
red lines represent the threshold between low, intermediate, and high. Mb, megabase; nRPM, normalized reads per million.
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seribantumab (anti-ERBB3), across all solid tumors.19

Seribantumab has a pantumor US Food and Drug Admin-
istration fast-track designation, based on results from the
pansolid tumor CRESTONE trial.35 In addition, the HER2-
HER3 bispecific humanized monoclonal antibody, zen-
ocutuzumab (MLCA-128), showed radiographic responses
in two patients with chemotherapy-resistant metastatic
pancreatic cancer, and a patient with NSCLC who had
progressed on six prior lines of therapies.36 Zenocutuzumab
also demonstrated a favorable activity and tolerability pro-
file across NRG1 fusion-positive tumors in the phase 2
eNRGy trial, providing a second tumor agnostic option.37

Taken together, these data highlight the importance of
identifying NRG1 fusions as these patients often lack other
driver alterations and targetable biomarkers. RNA
sequencing increases the detection rate for NRG1 fusions
10
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and offers another potential therapy option for patients with
advanced cancer.
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Figure 9 Comparing measures of potential immunotherapy response and cell proliferation between nonesmall-cell lung cancer (NSCLC) cases that are
NRG1 fusion positive versus negative. AeE: Comparison of tumor mutational burden (A), PD-L1 Q31tumor proportion score (TPS; B), CD274 expression (C), cell
proliferation score (D), and tumor immunogenic signature (TIGS; E) between NRG1 fusion-positive NSCLC cases and NRG1 fusion-negative NSCLC cases. A and C:
The red lines represent the threshold between high and low. D and E: The red lines represent the threshold between low, intermediate, and high. Mb,
megabase; nRPM, normalized reads per million.
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