⁴³⁹⁷ Impact of the updated IPSS-molecular prognostic scoring system for myelodysplastic syndrome in 10,283 real world samples

Grant Hogg¹, Qian Zeng³, Heidi Hoffmann³, Eric A Severson², Li Cai², Wenjie Chen³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Jensen^{1,2}, Angela Kenyon³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Jensen^{1,2}, Stanley Letovsky³, Henry Dong⁴, Narasimhan Nagan³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Jensen^{1,2}, Stanley Letovsky³, Henry Dong⁴, Narasimhan Nagan³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Jensen^{1,2}, Stanley Letovsky³, Henry Dong⁴, Narasimhan Nagan³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Jensen^{1,2}, Stanley Letovsky³, Henry Dong⁴, Narasimhan Nagan³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Jensen^{1,2}, Stanley Letovsky³, Henry Dong⁴, Narasimhan Nagan³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Jensen^{1,2}, Stanley Letovsky³, Henry Dong⁴, Narasimhan Nagan³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Jensen^{1,2}, Stanley Letovsky³, Henry Dong⁴, Narasimhan Nagan³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Jensen^{1,2}, Stanley Letovsky³, Henry Dong⁴, Narasimhan Nagan³, Shakti Ramkissoon², Marcia Eisenberg⁵, Anjen Chenn², Taylor J Stanley Letovsky³, Shakti Ramkissoon³, Shakti Ramkissoon³, Shakti Ramkissoon², Stanley Letovsky³, Henry Dong⁴, Stanley Letovsk³, Shakti Ramkissoon², Stanley Letovsk³, Shakti Ramkissoon³, Shakti Ramkissoon³, Shakti Ramkissoon³, Shakti Ramkissoon³, Shakti Ramkissoon³, Shakti Ramkissoon³, Shakti Ramkissoo³, Shakti Ramkissoo³, Shakti Ramkisso³, S ¹Laboratory Corporation of America[®] Holdings, New York, NY; ⁵Laboratory Corporation of America[®] Holdings, San Diego, CA; ²Laboratory Corporation of America[®] Holdings, New York, NY; ⁵Laboratory Corporation of America[®] Holdings, Burlington, NC

1. Introduction

The International Prognostic Scoring System-Molecular (IPSS-M) is a validated prognostic method that incorporates molecular information to improve risk stratification for patients with myelodysplastic syndromes (MDS). The IPSS-M is a weighted sum of prognostic variables consisting of clinical, cytogenetic, and somatic mutation information used to generate a patient-specific risk score and associated risk category assignment¹. The IPSS-M updates the revised IPSS (IPSS-R) to include molecular information from up to 31 genes. To assess the impact of combining additional molecular data into MDS prognosis, we retrospectively analyzed 10283 real world samples from patients who had been sequenced with a commercially available targeted nextgeneration sequencing (NGS) panel to determine the number of patients whose risk stratification could potentially be altered by the IPSS-M.

2. Methods

Next-generation sequencing was performed on 10283 samples using a panel capable of detecting and reporting single nucleotide variants and small indels across 50 genes. The IPSS-M uses 19 binary molecular features incorporating somatic mutation information from 31 genes, 27 of which are targeted by the NGS panel used. Whole blood or bone marrow samples from patients with cause-for-testing for MDS or peripheral blood cytopenias were submitted for analysis by a clinician. DNA was extracted and assayed by the targeted, NGS panel and sequenced on Illumina DNA sequencers (Illumina, San Diego, CA). Results were reviewed, orthogonally confirmed unless previously validated, and reported by clinical laboratory directors. Disease status or symptoms were abstracted from test requisitions for each patient. TP53 loss of heterozygosity and KMT2A partial tandem duplications (*MLL*PTD) are molecular features in the IPSS-M but could not be assessed in this study. Cytogenetics, bone marrow blast counts, and complete blood count data (platelets $(10^3/\mu L)$ and hemoglobin (g/dL)) necessary to calculate the IPSS-M was available for a subset of 1712 of 10283 samples. Absolute neutrophil count ($10^3/\mu$ L) was available for 1359 of 1712 samples allowing the calculation of the IPSS-R². Cytogenetics, bone marrow blast counts and CBCs were performed up to 90 days before and 14 days after the associated targeted sequencing analysis. Samples with bone marrow blast counts >20% were excluded. IPSS-M risk scores were calculated using the R package ipssm V1.0.0.

3. Conclusions

- 47.6% (4893/10283) of samples had molecular findings that could allow for further clinical risk stratification using IPSS-M.
- 535 of 1359 (39.4%) patients were reclassified to a different risk category based on IPSS-M compared to IPSS-R.
- These findings show the benefit of targeting a broad panel of genes using NGS for accurate MDS prognosis and patient risk stratification.

References

- 1. Bernard, E. *et al.* Molecular International Prognostic Scoring System for Myelodysplastic
- Syndromes. NEJM Evid. 1, EVIDoa2200008 (2022). 2. Greenberg, P. L. et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. *Blood* 120, 2454–2465 (2012).

Acknowledgements

We wish to thank Michael Biorn (Labcorp, Marietta, GA) and Shreegowri Mattighatta Bhojanna (Labcorp, Richardson, TX) for their invaluable assistance in gathering the clinical and cytogenetic data used in this study

Correction

April 21st 2023: The original version of this poster presented December 12th 2022 has been updated to remove errors due to incorrect encoding of 271 patients with TP53 multiple mutations. In Figure 1B, 45.6% (4689/10283) patients with IPSS-M molecular features has been corrected to 47.6% (4893/10283). In Figure 1C, 2.3% (236/10283) patients with TP53 multiple mutations has been corrected to 4.9% (507/10283). In Figure 3A, 40.2% (546/1359) patients has been corrected to 39.4% (535/1359) re-classified risk categories from IPSS-R to IPSS-M, In Figure 3B, 3.8% (51/1359) patients with changes of 2 risk categories has been corrected to 2.9% (40/1359) with a mean number of molecular features corrected from 2.88 to 2.89. The text has also been updated to reflect these changes.

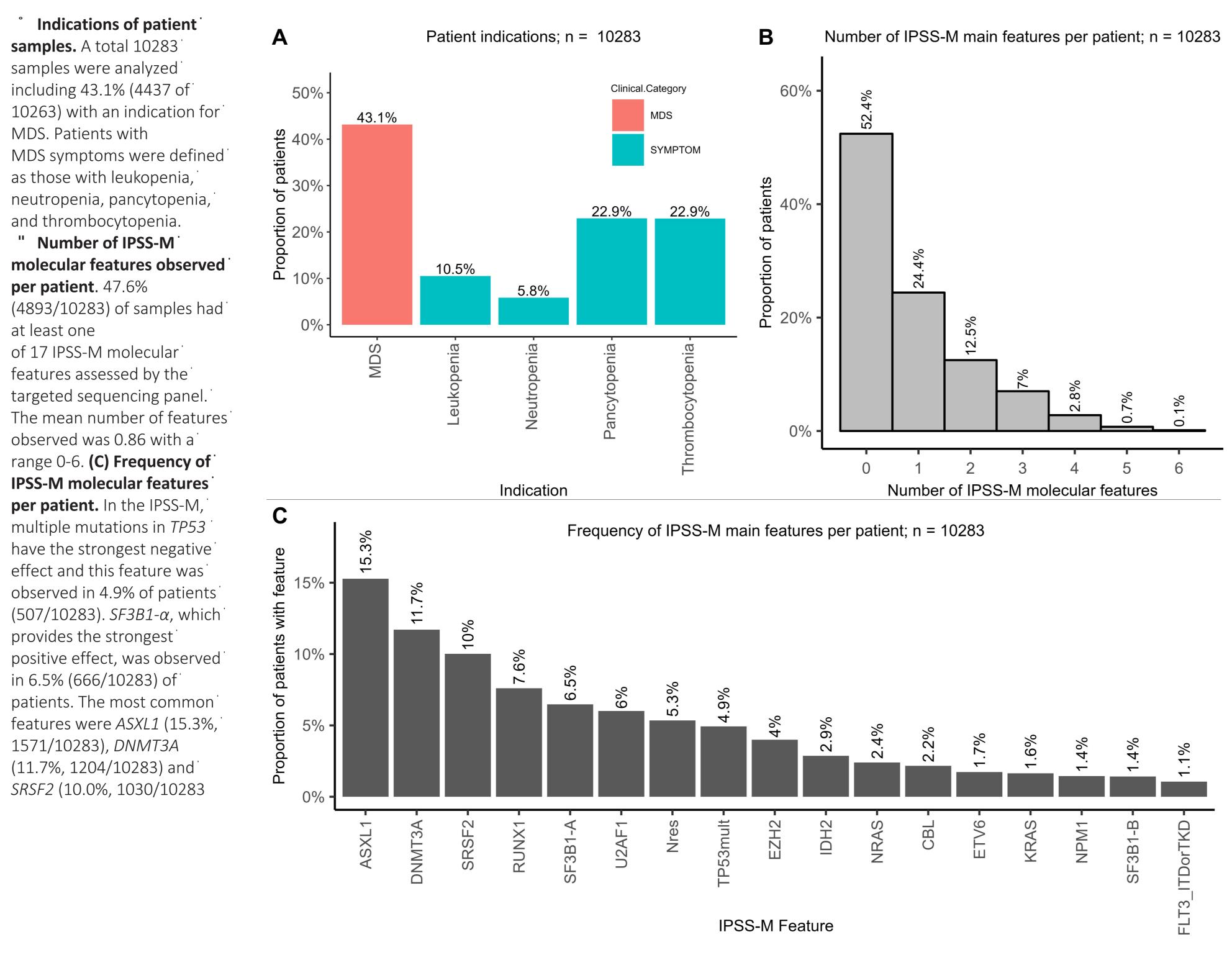
Correspondence: Grant Hogg hoggg@labcorp.com

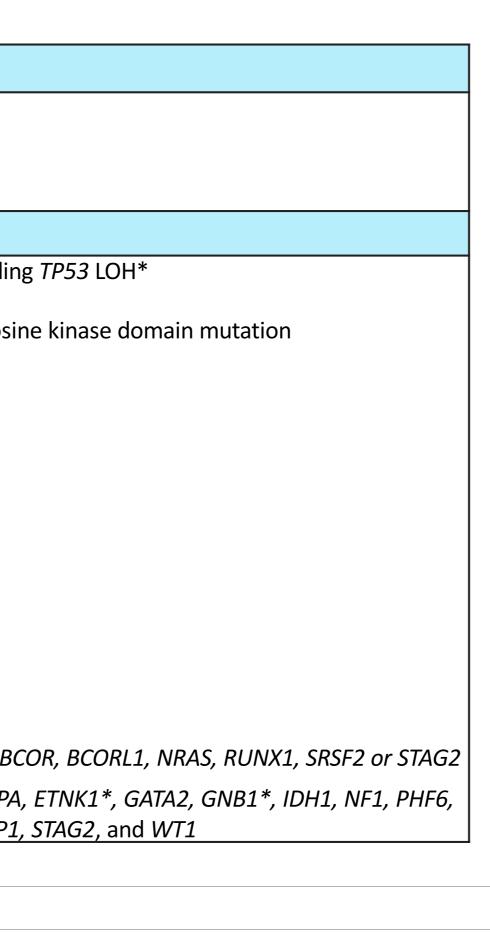
The 64th ASH Annual Meeting and Exposition, December 10-13, 2022, New Orleans ©2022 Laboratory Corporation of America® Holdings All rights reserved. DX_POS_297526-1122

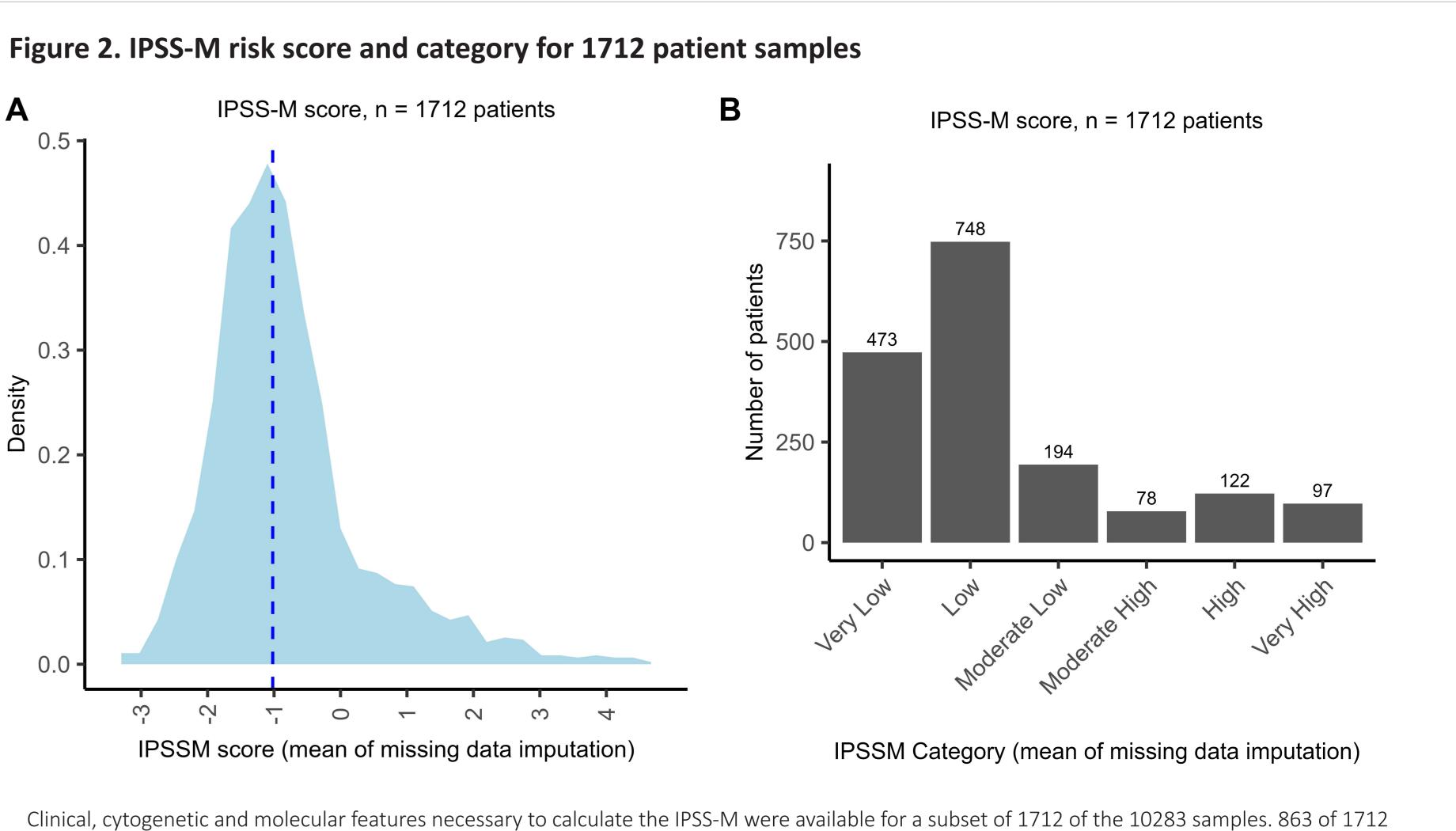
Tables + Figures

Table 1. IPSS-M weighted sum of prognostic variables

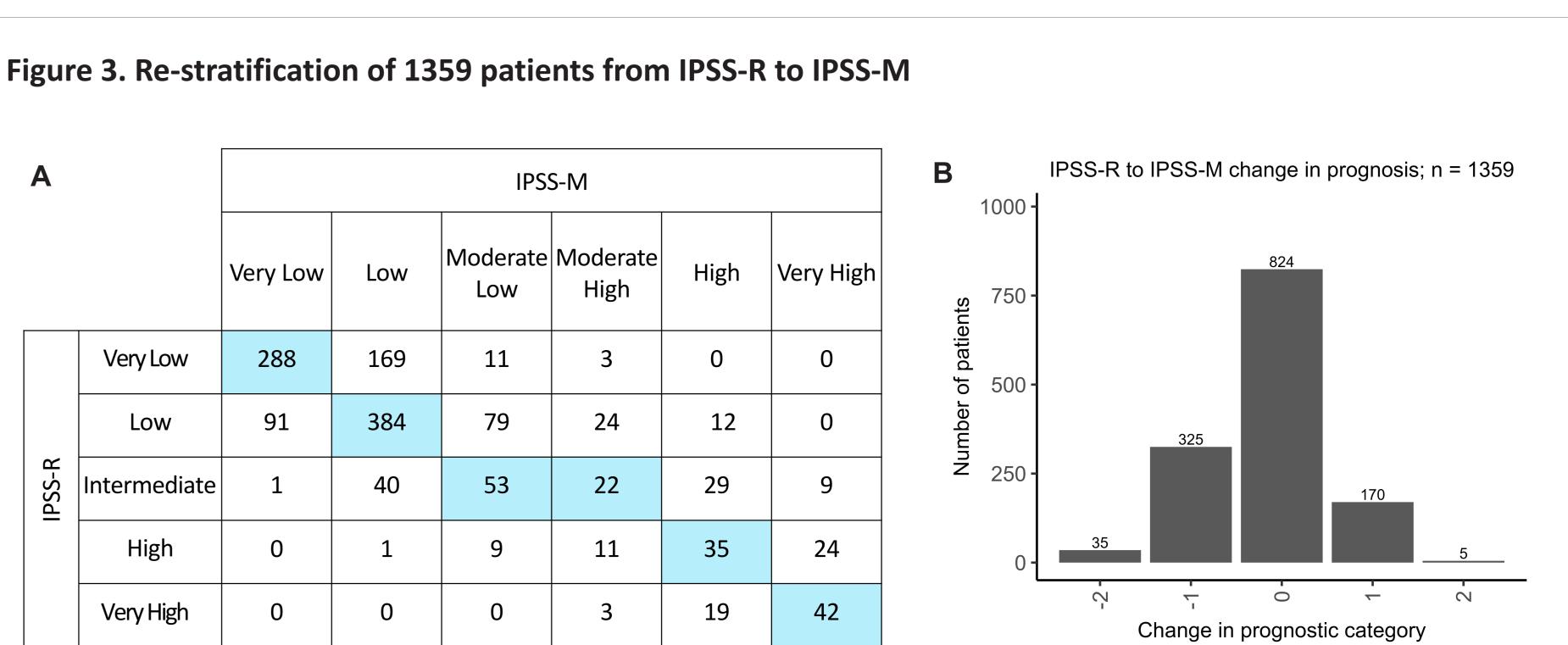
Table shows clinical, cytogenetic and molecular variables required for IPSS-M risk score calculations. Table adapted from Bernard, E. et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evid. 1, EVIDoa2200008 (2022). *TP53 LOH, MLL^{PTD}, ETNK1, GNB1, *PPM1D* and *PRPF8* were not assessed in his study. The IPSS-M accounts for missing values and generates a risk score under the best, worst and mean scenarios.


samples. A total 10283 samples were analyzed including 43.1% (4437 of MDS. Patients with as those with leukopenia, and thrombocytopenia.


per patient. 47.6% at least one of 17 IPSS-M molecular features assessed by the observed was 0.86 with a provides the strongest in 6.5% (666/10283) of


1571/10283), DNMT3A

Clinical and cytogenetic feature	IPSS-M model weight	Description
Bone marrow blasts (%)	0.070	•
Platelet count (10 ³ /µL)	-0.0022	
Hemoglobin (g/dL)	-0.171	
IPSS-R cytogenetic category	0.287	
Molecular feature	IPSS-M model weight	Description
TP53 ^{mult}	1.18	2 or more TP53 mutations including
MLL ^{PTD*}	0.798	
FLT3	0.798	Internal tandem duplicate or tyrosir
<i>SF3B1</i> ^{5q}	0.504	Co-mutation with del(5q)
NPM1	0.43	
RUNX1	0.423	
NRAS	0.417	
ETV6	0.391	
IDH2	0.379	
CBL	0.295	
EZH2	0.27	
U2AF1	0.247	
SRSF2	0.239	
DNMT3A	0.221	
ASXL1	0.213	
KRAS	0.202	
SF3B1 ^α	-0.0794	SF3B1 without co-mutation with BC
Gene residuals ("Nres")	0.231	2 or more of BCOR, BCORL1, CEBPA, PPM1D*, PRPF8*, PTPN11, SETBP1,


Figure 1. Patient indications and IPSS-M molecular features assessed in 10283 samples

(50.4%) had an indication of MDS. The median age was 72 years. (A) Area plot of IPSS-M risk score. Risk score plotted is the mean risk score for each patient taking into account missing values for TP53 LOH, MLLPTD, ETNK1, GNB1, PPM1D and PRPF8. Dashed blue line shows median IPSS-M risk score of-1.02. A risk score of 0 represents the average MDS patient suggesting the patients in this study have better outcomes than average. The median risk score was also lower than the published median risk score (-0.38) of the 2957 representative MDS patients used to build the IPSS-M model. Patients under 60 years (15.8%; 270/1712) had a better median IPSS-M risk score of -1.3 compared to -0.96 for those over 60 years (84.2%; 1442/1712). (B) IPSS-M risk scores stratified into risk categories. The average MDS patient is expected to show a "Moderate Low" or "Moderate High" risk category.

A			IPSS-IVI				
			Very Low	Low	Moderate Low	Moc H	
		Very Low	288	169	11		
	IPSS-R	Low	91	384	79		
		Intermediate	1	40	53		
		High	0	1	9		
		Very High	0	0	0		

Clinical, cytogenetic and molecular features necessary to calculate both the IPSS-M and IPSS-R were available for a subset of 1359 of the 10283 samples. 645 of 1359 (47.5%) had an indication of MDS. (A) Contingency table of IPSS-R risk category and corresponding IPSS-M risk category for 1359 patients. IPSS-R category of "Intermediate" was encoded as "Moderate Low" or "Moderate High" for IPSS-M. 535 of 1359 (39.4%) patients were reclassified. (B) Change in prognosis from IPSS-R to IPSS-M. A negative change in prognostic category indicates a worse prognosis upon re-stratification. A positive change indicates an improved prognosis. 40 of 1359 (2.9%) showed a difference of at least 2 risk categories. Patients whose prognosis worsened by 2 or more categories had a mean number of 2.89 IPSS-M molecular features.