# Enhanced detection and classification of cell-free DNA alterations through matched normal analyses with PGDx elio<sup>TM</sup> plasma complete

<u>Tonya N. Watkins<sup>1</sup>, Paul McGregor<sup>1</sup>, David Riley<sup>1</sup>, Tolga Ayazseven<sup>1</sup>, Kristy Waszkiewicz<sup>1</sup>, Kelly M. R. Gerding<sup>1</sup>, Ellen L. Verner<sup>1</sup>, Catherine Leech<sup>1</sup>,</u> Amy Greer<sup>1</sup>, Aanavi Karandikar<sup>1</sup>, Rami Zahr<sup>1</sup>, Kenneth C. Valkenburg<sup>1</sup>, Jamie Platt<sup>1</sup>, Samuel V. Angiuoli<sup>1</sup>, and Mark Sausen<sup>1</sup> <sup>1</sup> Personal Genome Diagnostics (Labcorp), Inc., 3600 Boston Street, Baltimore, MD 21224, USA

## ABSTRACT

Liquid biopsies represent a transformation in the management of cancer as they have the potential to detect, characterize, and monitor cancers earlier than can be achieved with conventional diagnostic modalities. However, cell-free DNA (cfDNA)-based alterations can be derived from the tumor, germline, or may be associated with clonal hematopoiesis (CH), which can confound non-invasive tumor profiling, molecular response assessment, and clonal evolution analyses through inaccurate variant classification. To facilitate global access to a decentralized liquid biopsy solution to address this, we developed and validated the 521 gene PGDx elio plasma complete test for paired analysis of cfDNA and matched leukocyte DNA. PGDx elio plasma complete enables detection of single nucleotide variants, insertions and deletions, copy number amplifications, translocations, microsatellite instability, blood tumor mutation burden, and loss of heterozygosity. We first optimized the assay workflow to incorporate genomic DNA derived from leukocytes to facilitate direct detection and characterization of germline alterations as well as those that may be associated with CH, resulting in de-duplicated, error-corrected sequencing coverage of approximately 1,750-fold. A fully automated bioinformatics algorithm was then developed and validated to perform integrated analyses of cfDNA-derived alterations to assign the appropriate biological source of these variants. To assess the impact of these paired sample analyses, we analyzed the blood samples obtained from 24 patients representing seven different solid tumor types (breast, colorectal, gastric, gastro-esophageal junction, lung, and melanoma). Across this cohort, of the alterations detected in cfDNA (n=322), 87.3% were correctly classified as somatic, germline or CH without the patient-matched normal blood sample. Specifically, of the variants that were determined to be associated with CH (n=26), only 35% were appropriately assigned without the paired comparison. Additional sources of discordance for somatic and germline alterations were primarily attributed to patients with high levels of ctDNA where differentiation of these variant sources can be challenging through solely computational-based techniques. Taken together, these data demonstrate that through the integrated analysis of cell-free DNA and matched leukocyte DNA, classification of the source of cfDNA-derived alterations can be achieved, which may improve the accuracy of non-invasive tumor profiling, molecular response assessment, and clonal evolution analyses.



| ASSAY PERFORMANCE                                                                      |                                       |       |  |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------|-------|--|--|--|--|
| Analytical Accuracy Primary Endpoint Results<br>Compared to Targeted NGS Panels (n=64) |                                       |       |  |  |  |  |
| Analyte PPA NPA                                                                        |                                       |       |  |  |  |  |
| SNVs                                                                                   | 92.7%                                 | 99.9% |  |  |  |  |
| Indels                                                                                 | 94.4%                                 | 99.9% |  |  |  |  |
| Translocations                                                                         | 82.4%                                 | 100%  |  |  |  |  |
| Amplifications                                                                         | 89.3%                                 | 96.4% |  |  |  |  |
| MSI                                                                                    | 100%                                  | 100%  |  |  |  |  |
| bTMB                                                                                   | 0.72 Spearman Correlation Coefficient |       |  |  |  |  |
| Analytical Accuracy Primary Endpoint Results Compared to Competitor                    |                                       |       |  |  |  |  |

| 500+ Gene cfDNA Assay (n=7) |                                       |                   |  |  |  |
|-----------------------------|---------------------------------------|-------------------|--|--|--|
| Analyte                     | PPA                                   | NPA               |  |  |  |
|                             | 92.2%                                 | 99.99%            |  |  |  |
| 214 62                      | (95/103)                              | (8414930/8414933) |  |  |  |
|                             | 83.3%                                 | 99.99%            |  |  |  |
| indeis                      | (10/12)                               | (8415023/8415024) |  |  |  |
| <b>Translocations</b> *     | 50% (2/4)                             | 99.7% (366/367)   |  |  |  |
| Amplifications <sup>‡</sup> | 76% (19/25)                           | 98.6% (141/143)   |  |  |  |
| MSI                         | N/A                                   | 100% (7/7)        |  |  |  |
| bTMB                        | 0.73 Spearman Correlation Coefficient |                   |  |  |  |

\* Discordant calls: *BRAF-ZC3HAV1* non-actionable. low fusion read count: *EWSR1-RP11-9L18.2*. filtered due to fusion with pseudogene

<sup>‡</sup> All calls were < 2-fold except 1 concordant *MET* call



|                                                       |                          | ind y                 |                                       |               |                                |                          |                                |                          | Analytical Specifi         | City                             |                   |                        |              |
|-------------------------------------------------------|--------------------------|-----------------------|---------------------------------------|---------------|--------------------------------|--------------------------|--------------------------------|--------------------------|----------------------------|----------------------------------|-------------------|------------------------|--------------|
| Variant Category                                      | Number of Variants       | <b>Observed Range</b> | Median LoD                            | Category      | Number of variants<br>reported | Variants per<br>category | Number of variants<br>reported | Variants per<br>category | Table 4. Assessment of Ana | lytical Specificity in Noncancer | ous Cohort (n=30) |                        |              |
| <b>Clinically Relevant SNVs &amp; Indels</b>          | 10 (9 SNV; 1 indel)      | 0.32% - 0.78%         | 0.40% VAF                             |               | (cfDNA only)                   | (%)                      | (cfDNA and buffy coat)         | (%)                      |                            |                                  |                   |                        |              |
| Panel-wide SNVs & Indels                              | 263 (245 SNV; 18 indels) | 0.34% - 1.75%         | 1.16% VAF                             | СН            | 11                             | 2.5%                     | 36                             | 8.3%                     | Cotogony                   | Number of variants               | variants per      | Number of variants     | variants per |
| Translocations                                        | 2                        | 0.22% - 0.82%         | 0.24% and 0.41% FRF                   | Germline      | 142                            | 32.7%                    | 157                            | 36.2%                    | Category                   | (cfDNA only)                     | (%)               | (cfDNA and buffy coat) | (%)          |
| Amplifications                                        | 1                        | 1 20 1 20 fold        | 1.20 fold                             | Indeterminate | N/A                            | N/A                      | 3                              | 0.7%                     |                            |                                  | (/0)              |                        |              |
| Amplifications                                        | L                        | 1.20 - 1.50-1010      | 1.29-1010                             | Somatic       | 281                            | 64.7%                    | 238                            | 54.8%                    | СН                         | 7                                | 3.0%              | 25                     | 10.7%        |
|                                                       |                          |                       |                                       | Total         | 434                            | 100.0%                   | 434                            | 100.0%                   | Germline                   | 187                              | 79.9%             | 197                    | 84.2%        |
| Clinically Actionable SNV and Indel LoD95 Performance |                          |                       | Fisher's Exact Test p-value = 0.00361 | 6             |                                |                          |                                | Indeterminate            | N/A                        | N/A                              | 4                 | 1.7%                   |              |
|                                                       |                          |                       |                                       |               |                                |                          |                                | Somatic                  | 40                         | 17.1%                            | 8                 | 3.4%                   |              |
|                                                       |                          |                       |                                       |               | 250                            |                          |                                |                          | Total                      | 234                              | 100.0%            | 234                    | 100.0%       |



| Panel-Wide SNVs              | 99.9999% (28009535/28009540) |
|------------------------------|------------------------------|
| Indels (clinically relevant) | 100% (1780/1780)             |
| Panel-wide Indels            | 99.9999% (28009528/28009540) |
| Translocations               | 100% (420/420)               |
| Amplifications               | 100% (760/760)               |
| MSI                          | 100% (20/20)                 |
| bTMB*                        | 100% (20/20)                 |

\*Confirmation that non-cancerous samples bTMB score was below the established Limit of Blank of 1.0 Muts/Mb

## METHODS

### **Assay Optimization**

- To mimic cfDNA, gDNA from buffy coat samples was sheared prior to library preparation
- To determine optimal shearing sizes and recovery, DNA obtained from cell line and buffy coat samples was sheared to multiple sizes
- 24 matched plasma and buffy coat samples were assessed using standard EPC and buffy coat-integrated analysis approaches

Assay Optimization Platform Lock Validation

### Validation

- Accuracy was assessed by comparing the reported variant results obtained from a clinical cohort of 27 matched plasma and buffy coat samples using standard EPC and buffy coat-integrated analysis approaches
- 18 cases had matched tissue which were assessed using PGDx elio<sup>TM</sup> tissue complete
  - Table 1 Camples Enrolled by Tumer Ty

| Table 1. Samples Enrolled by Tumor Type |                                          |                              |  |  |  |
|-----------------------------------------|------------------------------------------|------------------------------|--|--|--|
| Tumor Type                              | Unique Plasma<br>and Buffy Coat<br>Cases | Unique Tumor<br>Tissue Cases |  |  |  |
| Esophageal                              | 2                                        | 1                            |  |  |  |
| Melanoma                                | 3                                        | 1                            |  |  |  |
| Colorectal                              | 10                                       | 8                            |  |  |  |
| Endometrial                             | 2                                        | 2                            |  |  |  |
| Head and Neck                           | 1                                        | 1                            |  |  |  |
| Breast                                  | 4                                        | 2                            |  |  |  |
| Lung                                    | 4                                        | 2                            |  |  |  |
| Pancreatic                              | 1                                        | 1                            |  |  |  |
| Total                                   | 27                                       | 18                           |  |  |  |

- Specificity was assessed using matched plasma and buffy coat samples from 30 noncancerous donors. Variant

Figure 2. Distribution of Reclassified Variants Through Integrated Matched Normal Analysis

Abstract: 5597 Poster: 21

## VALIDATION RESULTS (continued)

abcorp



## Figure 3. Correlation of cfDNA VAF with White Blood Cell-Derived VAF by Alteration Source

### Table 3. Tumor Tissue-informed Assessment of Variant Reclassification

| Category                                         | Number of variants<br>reported<br>(cfDNA only) | Variants per<br>category<br>(%) | Number of variants<br>reported<br>(cfDNA and buffy coat) | Variants per<br>category<br>(%) |
|--------------------------------------------------|------------------------------------------------|---------------------------------|----------------------------------------------------------|---------------------------------|
| cfDNA Reported Somatic<br>(not present in tumor) | 66                                             | 50.8%                           | 50                                                       | 46.3%                           |
| cfDNA Reported Somatic<br>(present in tumor)     | 64                                             | 49.2%                           | 58                                                       | 53.7%                           |
| Total                                            | 130                                            | 100%                            | 108                                                      | 100%                            |

## **Analytical Specificity**

Analysis

Buffy Coat-Integrated Results

## Precision

Table 5. Assessment of Precision Across Buffy Coat Replicates

Overall

APA

99.5%

## Sensitivity

Table 6. Assessment of Analytical Sensitivity

| Indeterminate<br>Alterations | Evaluable<br>Alterations | Variants Considered |  |  |  |
|------------------------------|--------------------------|---------------------|--|--|--|
| n=7                          | 99.0%                    | All                 |  |  |  |
| n=0                          | 100.0%                   | Variants ≥ 0.5% VAF |  |  |  |

# CONCLUSIONS

Overal

99.2%

ANA

- cfDNA-based alterations can be derived from the tumor, germline, or may be associated with clonal hematopoiesis, which can confound non-invasive tumor profiling, molecular response assessment, and clonal evolution analyses through inaccurate variant classification
- To facilitate access to a liquid biopsy solution to address this, we developed and validated the 521 gene PGDx elio plasma complete test for paired analysis of cfDNA and matched leukocyte DNA
- These data demonstrate that through the integrated analysis of cell-free DNA and matched leukocyte DNA, classification of the source of cfDNA-derived alterations can be achieved, which may improve the accuracy of non-invasive tumor profiling, molecular response assessment, and clonal evolution analyses